
Performance Analysis of Parallel Cellular Automata Model using

OpenMp and PThread Programming Constructs
Padmaja Annapureddy

School of Computing and

Information Technology

REVA University, Banglore, India.

Padmaja.annapureddy@gmail.com,

Manjushree Sahana V

School of Computing and

Information Technology

REVA University, Banglore, India.

manjushreesahanav@gmail.com

Shilpa Chaudhari

School of Computing and

Information Technology

REVA University, Banglore, India.

shilpa.chaudhari@reva.edu.in

Abstract – Conway’s Game-of-life cellular

automaton is most well-known used approach for

analyzing the performance of parallel

programming constructs. The universe of the

Game-of-life is a 2-dimensional array of cells

wherein each cell takes two possible states, alive

or dead. The state of every cell is repeatedly

updated according to those of eight neighbors. A

cell will be alive if exactly three neighbors are

alive, or if it is alive and two neighbors are alive.

This paper simulates this Game-of-life using

OpenMP and PThread parallel programming

construct and analyzes their performance on

Linux platform. The main contribution of this

paper includes parallel implementations of

Game-of-life to improve overall speedup. It is

observed that the performance of PThread based

implementation is better than the OpenMP

model.

Keywords— OpenMP, PThreads, parallel

programming, cellular automata

I. INTRODUCTION

Game-of-life is a cellular automaton devised by
the British mathematician John Horton Conway in
1970. Its realization encapsulates universal
computation and construction [1]. Evolution of
Game of Life starts with its initial
state/configuration that does not require further
input. It consists of grid of cells. We represent the
number of states as s=2 in our solution where the
grid is n-dimensional (n=2). The evolution of the
cell at discrete time, namely at time step t, is just
observed over the infinite 2-dimensional orthogonal
grid of square cells with t=0 as initial step. Hence it
is also called as zero-player game. Each cell can be
either in alive or dead state and interact with set of
cells called its neighborhood (usually includes cell
itself with horizontal, vertical, or diagonal adjacent
eight neighbors). Four rules for transitions at each
step are as follows. (1) Any live cell with under
population (fewer than two live neighbors) dies. (2)
Any live cell with two or three live neighbor’s lives
on to the next generation. (3) Any live cell with
overcrowding (more than three live neighbors) dies.
(4) Any dead cell with exactly three live neighbors
becomes a live cell, as if by reproduction[2].

 An efficient solution to this problem for
performance improvement is proposed I this paper
using parallel programming constructs. The
proposed solution is implemented using Open
Multiprocessing (OpenMP) and POSIX threads
(PThreads) the parallel programming constructs in
such a way that the program is partitioned into serial
and parallel regions. OpenMP and PThreads are an
APIs that supports multi-platform shared memory
multiprocessing programming in C, C++, and
Fortran, on most processor architectures and
operating systems, including Solaris, AIX, HP-UX,
GNU/Linux, Mac OS X, and Windows
platforms[3]. OpenMP consists of a set of compiler
directives, library routines, and environment
variables that influence run-time behavior. Pthreads
is a lower level API for generating threads and
synchronization explicitly, fine-grained control over
thread management (create/join/etc), mutexes[4].

The developed simulation programs for Game of
Life use simple text based characters to represent
the cell death and survival. The proposed parallel
solutions for Game of Life are based on the
OpenMP and PThreads, which are analyzed to
determine an optimal solution.

II. RELATED WORKS

Open-MP is used to specify shared memory
parallelism for C/C++ and Fortran programs. It can
also operate on distributed memory systems with
additional layer of software. The additional layer is
needed to manage the memory coherency[6]. It uses
the fork-join model of parallel execution. Every
Open-MP program begins execution with a single
thread referred as master thread. When the master
thread encounters a parallel region, it forks
additional worker threads. The PThreads are same
as the OpenMP but only difference is OpenMP
using the high level abstraction and PThread is the
low level abstraction.

The fascination of Conway’s Game is that, the
simple rules leads to an unbelievable variety of
mathematical problems, puzzles and patterns, yet at
the same time it appears to exemplify emergent and
self-organized behavior[3]. For example if the initial
population consists of only one or two live cells,
then it loses validity only one step next.

The authors of [5] recommend a comparison of
serial program and parallel program. Many
programs still based only on single-threaded

SECOND
NATIONAL CONFERENCE ON ADVANCES IN COMPUTING AND INFORMATION TECHNOLOGY ISSN:2347-7385

© Asian Journal of Engineering and Technology Innovation (AJETI), 2018 166

mailto:Padmaja.annapureddy@gmail.com
mailto:manjushreesahanav@gmail.com
mailto:shilpa.chaudhari@reva.edu.in

development, cannot make good use of CPU
resources. They show that the parallel programs not
only have a higher time performance relative to the
serial program, but also have better CPU resources
utilization.

The complex combinatorial and biological
problems of the real world are solved using parallel
technique in [6]. An efficient parallel computational
method for the Game of life problem is solved using
Open-MP constructs. The inherent flexibility of the
Open-MP such as higher thread level abstraction
and breakdown of serial parallel regions make it
comfortable for the proposed solution to fit in the
field of bio-informatics, especially when dynamic
allocation and de- allocation techniques are used.

The ForeC mechanism can achieve better
parallel performance than Esterel[7]. The authors
uses synchronous language for concurrent safety
critical systems and OpenMP-a popular desktop
solution for parallel programming. They
demonstrate that the worst-case execution time of
ForeC programs can be estimated accurately.

The Microbial Fuel Cell (MFC) is a bio-
electrochemical transducer converting waste
products into electricity using microbial
communities. Cellular Automaton (CA) is a uniform
array of finite-state machines that update their states
in discrete time depending on states of their closest
neighbors by the same rule. A theoretical design of
such a parallel processor by implementing CA in
MFCs is proposed in [8].

The ten unison principles of living organisms in

game of life given in [9] are as follows. (1)

Organized body, (2) Distinctive and symmetrical

structure; (3) Autonomous and energetic

metabolism; (4) Excitability, sensibility, and

response; (5) Modeled reproduction; (6)

Homeostatic equilibrium; (7) Growth and

transformation; (8) Synchronized rhythms; (9)

Autonomous preservation, and (10) Patterned

behavior.

III. PARALLEL PROGRAMMING MODEL FOR

GAME-OF-LIFE

Each cell have its own dedicated thread to
compute the cell's value in the next generation. This
thread is embedded in a class that is instantiated
M*N times by the driver, once for each cell in the
grid. Thread synchronization is done with
semaphores. The primary problem solved is
coordinating all the cell threads during each
generation. A cell thread cannot start computing the
new cell value for the next generation until all other
cells have completed their computation for the
current generation. To develop this model, we used
the shared memory model of ANSI-C - OpenMP
and PThreads APIs for parallelization. The OpenMP
and PThreads based model for the game of life

solution is conducted on two different architecture
systems (Dual-core and Quad-core). The parallel
algorithm is developed using OpenMP and
PThreads constructs considering the matrix into
minor equal pieces.

The cellular automaton is represented with M*N

matrix, where each cell shows the living status

(alive or dead). The equal size second matrix to

store the calculated next position is used. A swap

between two pointers of the matrixes at the end of

each round is done, in order to have next round

current state. The dimensions of the table and the

number of thread in the proposed solution are

dynamically changed, with the default values for

dimension as 90*30 and one thread. The dynamic

memory is allocated using malloc() function for

each cell and thread. In order to handle current

situation, two grids are used - one for original status

and other to store the new situation.

A. Distribution of Parallel regions

Every cell value is dependent on the current cell

values in Game of Life that takes M*N grid size.

This shows that the cells are dependent both on data

as well as processing that are to be done on them.

Assuming the system to be multithread shared

memory model we have to divide the threads

equally among processors. A simple way of

achieving this can be done just by dividing the cells

into the grids.

 M

 M

Figure 1 Game of Life that takes M*N grid size

Considering M as rows and N as columns, the grid

is divided into parts from the output obtained by

M*N as shown in figure 1. This gives the solution to

divide the grid into cells whereas a closer look tells

us what problems are faced in doing so. Though the

hardware is invented to dual core or quad core, we

are still using sequential methods to solve such

problems. More parallelism to the required problem

increases efficiency and performance of the process.

The parallelism is added based on columns and

sections divided by lines which are accessed when

ever required by columns. This method gives better

performance to the shared memory model. Problem

can be solved using PThread and OpenMP for

separating parallel portions. The limits are defined

as follows: Each thread is identified using unique ID

starting from 0. So the mathematical relationship is

given as shown below.

ST=ID*h/NT

N N

T1

T2
T3

T4

T5

SECOND
NATIONAL CONFERENCE ON ADVANCES IN COMPUTING AND INFORMATION TECHNOLOGY ISSN:2347-7385

© Asian Journal of Engineering and Technology Innovation (AJETI), 2018 167

F=ST+h/NT

Where ST-Start Thread, ID-Unique Id, h-Height,

NT- the number of tendril of height and height

(number of rows present) of the grid.

B. Synchronization

Multithreading based solution is used in this model

wherein the threads are dependents on each other.

This dependency requires proper synchronization

for accurate solution. In PThread based model,

<pthread.h> file is used for using the thread

synchronization primitives. Once the thread

encounters pthread_barrier_wait(), it suspends and

wait until remaining threads reaches the barrier or

saturation level. The limit is decided based on the

values set during initialization of the barrier. No

threads move out of barrier area until all threads

reaches it. These provide consistency in our data

and have required control during processing.

IV. IMPLEMENTATION

The implementation divides the operation into two

modes game play mode and game bench mode. The

whole operation should undergo these two modes.

The game play mode appears on the terminal. It

consists of current state of the game and few other

information. To feel the output, display of the output

should be fit to the screen size. So some default

values are given such as 100*50. The output size

should not exceed this value. An additional feature

such as time measurement is added in the game

bench mode. It can be calculated using the function

gettime(). This method gives no information about

table status rather it can be made to statistically

represent size, number of threads running and

running time. User can go with default or non-

default values. The default values has dimension of

90*30 where as the user can defined their own

values not exceeding the limit in the initial phase.

The table 1 discusses some basic common function

used as OpenMP and Pthread parallel programming

constructs.

Table 1: OpenMP and Pthread parallel programming constructs

Function Arguments Return Operation

Initialize_board() Int **current, int dflag void If the default flag is 1, the
authority table 0, otherwise
randomly 0,1.

Read_file() Int**current, chat*filename void Reading the original state
of the file.

Copy_region() Int**current, int**next void Copy of the region and in
the second table.

Adjacent_to() Int**current, int i,int j int Returns the number of live
neighbors of the cell of the
current with position(i,j).

Play() Int**current, int**next, int
start,finish

void Applying the rules of the
game, and renewal of
values in the table next
state(point next).

Print() Int**current void Print the status of the
current panel

Arg_check() Int argc, chat*argv[] int Check the parameters with
which the executable was
called. Returns 0 on
successful testing.

Print_help() void void Display possible
parameters such outside
and interpretation.

A. Implementation using PThread

The barrier value is initialized in the main function

to make all threads undergo synchronization for

effective utilization of the resources. Thread is

created using the input function entry_fun(). This

function defines the limit of the screen as mentioned

earlier, then we have 102 iterations which is for

execution of 102 laps of Game of Life. The program

SECOND
NATIONAL CONFERENCE ON ADVANCES IN COMPUTING AND INFORMATION TECHNOLOGY ISSN:2347-7385

© Asian Journal of Engineering and Technology Innovation (AJETI), 2018 168

starts executing using game play function which

consists of (curr & nxt) and limits the grids on

which rules shall be applied. The function game

play()n applies rules and values in the grid are

refreshed which give next index. Here the control

makes sure no data is altered. Following the game

play comes the barrier wait() function which helps

tendrils to change the values in the grid to the next

state which is available. The thread with ID ==0

swaps current pointer to the pointer in the next

round which becomes current round in the next

generation. Suppose at this stage if call game play

function it takes a print to give status of the grid in

the current present round. This swapping continuous

and barrier makes sure the thread would not enter

the next round if it has not undergone the current

round.

B. Implementation using OPENMP

 The Open MP implementation is not much

different from PThread. Also the option

num_thread() is used to define how many threads

has to be executed in the parallel region. The

functionality of working is same as that of PThread.

All Threads undergo barrier_wait() function to have

synchronization.

V. RESULTS

A. System requirements

Two different systems (2-core and 4-core) are used

for execution of the developed Pthread and OpenMP

model. The specifications of the systems are shown

in the Table 2.

Table 2: System Specifications

characteristics DualCore

system

Quad core

system

Cpu model Intel (R)

Core(TM) 2 Duo

CPU

Intel(R)

Core(TM) i5-

4570 CPU

Frequency 2.10 Ghz 3.20Ghz

#Cores 2 4

L2 Cache

/Core

2048KB 1024KB

#Threads 2 4

RAM 3.00GB 4.00GB

System Type 32 bit OS 64bit OS

B. Analysis od Pthread Model Results

The Figure 2 to 5 shows the graphs obtained for
implementation with Pthreads with different
dimension. It is observed that the time taken for
execution of the game of life application is reduced
with respect to increase in number of threads in the
model. After some specific number of threads the
increase in threads does not affect the time taken for
execution of the model. The number for threads can

be four irrespective of dimension of the filed in
game of life to achieve optimal execution time.

C. Analysis od OpenMP Model Results

The Figure 6 to 9 shows the graphs obtained for

implementation with OpenMP with different

dimension.

Figure 2 Number of Threads Vs time in PThreads

Model with 90x30

0

20000

40000

60000

80000

100000

1 2 3 4 5 6

Quadcore

Dualcore

Figure 3 Number of Threads Vs time in PThreads

Model with

200x50

0

100000

200000

300000

400000

500000

1 2 3 4 5 6

Quadco
re

Dualcor
e

Figure 4 Number of Threads Vs time in PThreads

Model with 200x500

Time

(us)

Threads

Time

(us)

Threads

SECOND
NATIONAL CONFERENCE ON ADVANCES IN COMPUTING AND INFORMATION TECHNOLOGY ISSN:2347-7385

© Asian Journal of Engineering and Technology Innovation (AJETI), 2018 169

0

10000000

20000000

30000000

40000000

1 2 3 4 5 6

Quadcore

Dualcore

Figure 5 Number of Threads Vs time in PThreads

Model with 200x200

0

20000000

40000000

60000000

80000000

10000000

12000000

14000000

123456

Quadc
ore

Dualcor
e

Figure 6 Number of Threads Vs time in OpenMP

Model with

90x30

0

50000

100000

150000

200000

250000

1 2 3 4 5 6

Quadco
re

Dualcor
e

Figure 7 Number of Threads Vs time in OpenMP

Model with

200x50

0

50000

100000

150000

200000

250000

300000

350000

400000

1 2 3 4 5 6

Quadco
re

Dualcor
e

Figure 8 Number of Threads Vs time in OpenMP

Model with 200x500

0

5000000

10000000

15000000

20000000

25000000

30000000

35000000

40000000

1 2 3 4 5 6

Quadcor
e

Dualcore

Figure 9 Number of Threads Vs time in OpenMP

Model with 200x200

Time

(us)

Threads

Time

(us)

Threads

Time

(us)

Threads

Time

(us)

Threads

Time

(us)

Threads

SECOND
NATIONAL CONFERENCE ON ADVANCES IN COMPUTING AND INFORMATION TECHNOLOGY ISSN:2347-7385

© Asian Journal of Engineering and Technology Innovation (AJETI), 2018 170

0

20000000

40000000

60000000

80000000

10000000

12000000

14000000

123456

Quadc
ore

Dualco
re

Similar to Pthread model, it is observed that the

time taken for execution of the game of life
application is reduced with respect to increase in
number of threads in the model. After some specific
number of threads the increase in threads does not
affect the time taken for execution of the model. The
number for threads can be four irrespective of
dimension of the filed in game of life to achieve
optimal execution time.

It is obeserved that Pthread implementation is
better than that of OpenMP, as OpenMP has higher
level of abstraction API’s than compared to Pthread
which has low level approach.

VI. CONCLUSION

The performance of the Game of Life problem is
improved by assigning more number of threads in
the parallel programs, The parallel implementation
of sequential program is more powerful to utilize the
software and hardware in optimal way. The
proposed solution is used to run infinite number of
threads within a grid. Pthread being a low level
abstraction has higher and better performance than
compared to OpenMP which is high level
abstraction. This model can be used to teach the
parallel programming concepts.

REFERENCES

[1] Adamatzky A. Game of Life cellular automata. vol. 1.
Springer; 2010.

[2] Hossain, Fahmida, Md Shamsujjoha, and Md Nawab
Yousuf Ali. "Biological and combinatorial problems
exploration using parallel and evolutionary
computing." ICT and Knowledge Engineering (ICT&KE),
2016 14th International Conference on. IEEE, 2016.

[3] Fujita, Toru, Koji Nakano, and Yasuaki Ito. "Fast
Simulation of Conway’s Game of Life Using Bitwise
Parallel Bulk Computation on a GPU." International Journal
of Foundations of Computer Science 27.08 (2016): 981-
1003.

[4] M. Young, The Technical Writer’s Handbook. Mill Valley,
CA: University Science, 1989.

[5] Longfei Ma, Xue Chen and Zhouxiang Meng.“A
performance Analysis of the Game of Life based on parallel
algorithm” International Journal of Foundations of
Computer Science 20.09(2012):1209.4408.

[6] [6] Fahmida Hossain, Md. Shamsujjoha ,and Md. Nawab
Yousuf Ali “ Biological and combinatorial problems
exploration using parallel and evolutionary computing”
Fourteenth International Conference on ICT and
Knowledge engineering,2016:07804095.

[7] [7] Eugene Yip, Alain Girault, Partha S. Roop and Morteza
Biglari-Abhari.“The ForeC synchronous deterministic
parallel programming language for multicores ” Institute of
Electrical and Electronics Engineers(IEEE),2016:hal-
01412102.

[8] [8] Michail-Antisthenis Tsompanas, Andrew Adamatzky,
Georgios Ch. Sirakoulis, John Greenman, and Ioannis
Ieropoulos.” Towards implementation of cellular automata
in Microbial fuel cells” International Journal of
Foundations of Computer Science 05.03(2017):1703.01580.

[9] [9] LUDUS VITALLS.“The game of life ten precepts and a
patterned process” International Journal of Foundations of
history and philceophy of medicine, vol.XV,2007:450-922-
1-SM.

Time

(us)

Threads

SECOND
NATIONAL CONFERENCE ON ADVANCES IN COMPUTING AND INFORMATION TECHNOLOGY ISSN:2347-7385

© Asian Journal of Engineering and Technology Innovation (AJETI), 2018 171

