
OpenStack Post Deployment Config, Logs and Metrics

Management System
Mahesh D N

Department of Computer Science and Engineering

Reva Institute of Technology and Management,

Bengaluru, India

Email: maheshdn18@gmail.com

Pavithra P

Department of Computer Science and Engineering

Reva Institute of Technology and Management,

Bengaluru, India

Abstract -The OpenStack cloud platform

has more number of configuration variables.

Hence there is a need for an efficient

management system to manage the configuration

variables of the OpenStack cloud platform post

deployment. It is very necessary to identify the

differences in the configuration variables across

multi datacenter environment. To keep track

values of configuration variables from time to

time in the cloud environment. Further to modify

the configuration variables selectively in the

cloud environment. The management system can

also be extended to manage the system

information such as memory, CPU info etc. The

OpenStack cloud services generate huge amount

of logs. The logs and performance metrics have

to be selectively collected for analyzing the

failures and performance issues. To achieve this I

propose a light weight post deployment

configuration, logs and metrics management

system for OpenStack based cloud platforms.

The system will have agents to collect the

configuration variables, logs and performance

metrics and stores on a centralized common

node. The user can query the collected

information for analyzing configuration

differences, root cause for failures and

performance issues.

I. INTRODUCTION

OpenStack is an IaaS (Infrastructure as a

Service) solution provider [5]. It is an open source

cloud platform that offers a bunch of interrelated

services. Each OpenStack service exposes APIs for

interacting with other services. Based on the

requirements the some or all services can be

installed. Ceilometer provides metering service,

which collects all the required metrics for billing.

Ceilometer is also used for statistical purpose,

benchmark and scalability evaluation. OpenStack

collects a lot of data which goes unused apart from

getting used for its core functionalities. Most of the

cloud deployments span across multiple datacenters.

So there is a need for having a centralized

monitoring system for configurations across the

system. Some of the tools available for deployment

and management of the OpenStack cloud are like

puppet, chef, Ansible etc. But there is a need for

managing the system post deployment. When the

size of the cloud is big and complex, it will be very

difficult to manage and diagnose [1] the cloud

resources. It is very necessary for the users to

quickly identify the root cause for the failures.

In order to effectively analyze the root cause for the

problem it is necessary to collect all the operational

logs from the cloud environment. The production

environment generates huge amount of logs every

day. So the task of looking for root cause from the

huge logs is very inefficient. It is more time

consuming, require more skilled human resources.

Hence the proposed post deployment management

system for OpenStack cloud can efficiently analyze

the differences between the multiple datacenters and

across components. Also keep track of configuration

changes from time to time. Further to modify the

configuration variables selectively in the cloud

environment. The management system can also be

extended to manage the system information such as

memory, CPU info etc. And logs and performance

metrics have to be selectively collected for

analyzing the failures and performance issues. The

proposed light weight post deployment

configuration, logs and metrics management system

for OpenStack based cloud platforms. The system

will have agents to collect the configuration

variables, logs and performance metrics and stores

on a centralized common node. The user can query

the collected information for analyzing

configuration differences, root cause for failures and

performance issues.

II. MOTIVATION

As the world is moving towards cloud

services, it is very important to manage the

production environment to provide best services.

When the size of the cloud is big and complex, it

will be very difficult to manage and diagnose the

cloud resources. Most of the cloud deployments

span across multiple datacenters. It is very necessary

for the users to quickly identify the root cause for

the failures. The production cloud environment

generates huge amount of logs on every day. Hence

a specific centralized tool which is being proposed

will be much helpful to maintain the OpenStack

cloud deployments post deployment.

III. LITERATURE REVIEW

Review of the literature has been done with

following sources:

SECOND
NATIONAL CONFERENCE ON ADVANCES IN COMPUTING AND INFORMATION TECHNOLOGY ISSN:2347-7385

© Asian Journal of Engineering and Technology Innovation (AJETI), 2018 160

 The Internet

 Publications and articles

Cloud Computing is a rapidly growing

technology in the market currently. So there is a

need for quick automated deployment and scalable

infrastructure to serve the purpose. The base of the

cloud computing technology is Infrastructure as a

Service (IaaS). The providers have to deploy both

physical resources as well as virtual resources while

building cloud infrastructure with lot of difficulties.

Hence the cloud infrastructure management has to

be automated so that the resources provisioned

quickly and released with minimal effort from cloud

service providers. Infrastructure scalability is

another big task for the cloud infrastructure

providers. The cloud deployment models can be

broadly classified into four types: 1) public; 2)

private; 3) hybrid; 4) community [2]. OpenStack is a

widely used distributed IaaS cloud platform [3]. It is

best known for its speedy release cycle and

reliability [4].

The following sections will describe the list of

deployment and management tools available for

deploying and managing OpenStack clouds.

A. Salt Stack

It is an open source python based

Configuration management system [6]. It supports

“Infrastructure as Code” for the deployment and

management of cloud. It is a new approach for

deploying and managing cloud infrastructure

dynamically. It is easy to plug with the cloud

platform as it is written in python. It maintains large

number of remote nodes in a defined state. The best

feature of salt is parallelism in the executing of

commands remotely using AES algorithm. The

architecture of Salt Stack is as shown in Fig. 1:

The Centralized Salt Stack Master: It issues

commands to the Slat masters for managing

authentication and communication with salt minion.

The Salt Stack Master: It simple delegates

commands from centralized slat master to Minions

to achieve parallelism.

The Slat Stack Minion: It executes the commands

that are received from the salt master and returns

back the results to the salt master. It has no default

deployment method for OpenStack, but community

is growing to provide a promising model for

OpenStack deployment. Puppet is written in RUBY.

It used DSL for manifest files and ERB for writing

templates.

B. Puppet

This provides client-server architecture for

cloud deployment and management [7]. The client

will periodically poll the server for the desired state

and returns the status to the server. Puppet has a

lifecycle that works in highly distributed manner for

deploying and managing the cloud efficiently. It is

easy to upgrade and manage the cloud using puppet.

The architecture of puppet is as shown in Fig. 2.

The Puppet Master: It will send commands to the

clients (puppet agents) and receives back the status

from clients.

The Puppet Agent: It executes the commands as

directed by the puppet master and returns the results

back to the puppet master.

C. Chef

Chef is an automated configuration

management system. It supports “Infrastructure as

Code” for describing and deploying the cloud

infrastructure. It brings the resources (servers and

services) into life. Since the infrastructure is

managed by code, it can be easily automated and

tested with efficiency. It is widely used for cloud

infrastructure deployment on a bare metal. It uses

RUBY for defining the environment. The

chef environment is organized into cookbooks and

recipes for deployment and management [8].

SECOND
NATIONAL CONFERENCE ON ADVANCES IN COMPUTING AND INFORMATION TECHNOLOGY ISSN:2347-7385

© Asian Journal of Engineering and Technology Innovation (AJETI), 2018 161

The chef core is written in Erlang and it is

mainly designed for scalability to thousands of

physical and virtual servers. It uses Infrastructure as

a Code with integrated version control for

configuration management.

The cookbook contains the main configuration

information for the desired state of the node. The

configuration information is defined with attributes,

recipes, templates, metadata, resources and libraries.

The architectural components of chef are [9]:

The Chef Server: This is the master node where all

the configuration data is stored. It is associated with

version control system. It directs the chef nodes to

execute the chef cookbooks to configure the cloud

infrastructure.

The Chef Workstation: All the chef cookbooks and

recipes are developed on the chef workstation.

The Chef Nodes: The chef nodes execute the

cookbooks and recipes as directed by the chef server

to deploy and configure the cloud infrastructure.

D. Ansible

Ansible is simple and powerful open

source tool for automation platform. It helps in task

automation, configuration management and

application management. In short it is an IT

Orchestration system. Unlike puppet and chef it will

not use agents on remote nodes. In a large

organization it is very challenging to manage cloud

resources. When it comes to cloud platform such as

OpenStack, It has to manage individual services as

well as manage relationship between the various

cloud services [10].

Ansible is not just a deployment tool. Once the

cloud is deployed, various OpenStack modules can

be used to manage the cloud operations. Ansible can

also be used for PaaS and SaaS deployments on top

of IaaS. That is Ansible is used to provision

application and services on top of cloud

infrastructure [11]. It serves all cloud operators,

users and developers.

E. DevStack

DevStack is an open source tool which is a

series of extensible scripts for deploying OpenStack

environment quickly. It will install latest version by

default or a specific version as mentioned from the

git repository. It is used to deploy environments for

developmental and testing purposes. DevStack is

not a production deployment tool [12].

F. TripleO

TripleO (OpenStack on OpenStack) is a

tool that provides facilities such as deploying,

Operating, Upgrading and managing OpenStack

services using its own cloud services [13]. It has two

layers of deployment:

The “Under-Cloud”: This is an OpenStack

deployment on the bare metal servers that spawns

VMs for over-cloud deployment. It will manage the

VMs where the over-cloud services are deployed.

The “Over-Cloud”: This is the provider cloud

deployment that is managed by the under-cloud. The

over-cloud configuration is defined in the

OpenStack Heat template and is orchestrated by the

Heat engine.

This is a dedicated OpenStack deployment project

that is integrated with OpenStack. It is targeted for

large scale production deployments. It supports

continuous integration and continuous deployment.

It has itself proved as a long-term project. Many

tech giants such as Red Hat, HP, IBM and other are

using contributing towards the development of

TripleO and using for the deployment of cloud

infrastructure.

G. LOGAN

In a large and complex compute

environment it is very challenging for managing

cloud infrastructure. Debugging a failure is one of

the challenges in large compute environment [14],

[1]. Debugging a problem in cloud environment and

quickly find the root cause without compromising

on the quality of service is very challenging. Further

in a multi datacenter deployments and distributed

datacenters it is much more difficult for identifying

a root cause of the problems. When a failure occurs,

it may be in any of the cloud components. Hence in

order to effectively analyze the root cause for the

problem it is necessary to collect all the operational

logs from the cloud environment. The production

environment generates huge amount of logs every

day. So the task of looking for root cause from the

huge logs is very inefficient. It is more time

consuming, require more skilled human resources.

LOGAN (LOG ANalytics) helps to quickly identify

the root cause of the problems. LOGAN used an

analytical algorithm to keep track of the previous

SECOND
NATIONAL CONFERENCE ON ADVANCES IN COMPUTING AND INFORMATION TECHNOLOGY ISSN:2347-7385

© Asian Journal of Engineering and Technology Innovation (AJETI), 2018 162

occurrences of problems and try to match the new

problems to find the root cause quickly.

H. ELK Stack

ELK is a stack of three components Elastic

Search, Logstash and Kibana. It is a widely used log

monitoring system. It is used to gather large

amounts of logs (audit and event-logs) from the

computers. The process involves collection of logs,

Storing and Indexing on a centralized system,

analyzing and reporting. The ELK stack has three

main components:

Logstash: This is a collector agent that is deployed

on the systems from where logs have to be

collected. The Logstash forwards agents reside on

the remote nodes and forward the logs to the

centralized Logstash server where the logs are

filtered and refined before feeding it to elastic

search engine.

Elastic Search: This is database engine that stores

all the log messages and indexes for optimal query

and reporting.

Kibana: Kibana is visualizing interface where the

logs statistics can be viewed and queried. Kibana

also provides to filter the logs and debug the issues

efficiently.

Hence efficiently analyzing the logs will helps in

proper decision making and good services [15].

Most of the cloud platforms use ELK for monitoring

logs.

Fig 4: ELK Stack

I. Ceilometer Metrics

Ceilometer is OpenStack open monitoring

source. It is main project for billing in OpenStack

which is current de facto standard. Analysis of

monitoring structure in cloud will gives good idea of

monitoring Network virtualization. Ceilometer

provides metering service, which collects all the

required metrics for billing. Ceilometer is also used

for statistical purpose, benchmark and scalability

evaluation [16], [17], [18]. As a result, initial and

last motives are billing. At first time, basic

monitoring parameters (ex. instance, CPU, disk, ram

and image upload event…) are monitored. Also

alarm and event in the way of triggering mechanism

are introduced. And further monitoring of network

parameter in virtual machine or bare metal machine

is added.

Fig 5: Ceilometer Architecture

IV. PROPOSED SYSTEM

The project aims at providing a user

friendly tool to manage the configurations, logs and

metrics of post deployment of OpenStack clouds.

The OpenStack cloud platform has huge number of

configuration variables. Hence there is a need for an

efficient management system to manage the

configurations of the OpenStack cloud. The

management system should also be extended to

manage the system information such as memory,

CPU info etc.

A. Architecture of proposed system

The configuration management system

shall be deployed on one of the common node

which has access to all the data centers. The

configuration management system shall be

configured to read configuration information from

the OpenStack deployments at regular intervals.

The proposed system aims at:

• Gather OpenStack configurations from multiple

data centers and store in a common centralized

node.

• Track the changes in a data center configuration

from time to time.

• Check the configuration differences across

different data centers.

• Check the configuration differences across

multiple instances of a particular component

type within the same data center.

• Generate comparison data to simplify

correlation of changes in configurations with

performance variations and other faults.

• Push configuration changes to OpenStack nodes

(future potential work item).

• Gather the required logs to analyze the failures.

• Also gather physical host and system

information such as Basic OS Info, Network

SECOND
NATIONAL CONFERENCE ON ADVANCES IN COMPUTING AND INFORMATION TECHNOLOGY ISSN:2347-7385

© Asian Journal of Engineering and Technology Innovation (AJETI), 2018 163

Info, Storage Info, Processor Info, Memory Info

etc.

• Check the differences in the physical host info

and other system information across different

machines.

Fig.6: The Block diagram of Proposed System

B. Components of proposed system

Fig 7: Components of Proposed System

The tool will have 3 major components/parts as

follows

1. GUI Component

2. Database

3. Collector Agents

The GUI serves following needs:

 Allow user to fire Config, logs and metrics

operation.

 Allow user to query data base to view

configuration, logs and metric details.

 Allow user to generate comparison results

across and within the data centers.

 Allow user to view reports.

The Database serves following needs:

 The database will be used to store and query the

configuration, logs and metrics by the user.

The Collector Agents serves following needs:

 Reads the Config, logs and metrics

information’s from the OpenStack data center

nodes.

 The tool will takes an input configuration file

which gives the details of the data center nodes

and authentication information.

C. Software and Hardware Requirements

Software

 Python 2.7 and above

 Python gtk (pygtk) GUI SDK

 Database (Mongo DB)

 PyMongo Client to interact with MongoDB

 Python xlwt for writing report to spreadsheet

 Python Glade UI designer

 OpenStack DevStack Deployment

Hardware

 Should work on both 32 bit and 64bit machines.

 Memory and storage requirements depend on

the number of data centers and number of

machines/VMs each data center hosts.

Estimated figures to be updated.

 Test setup can be deployed on a basic laptop

with minimal specs using DevStack

deployment.

V. CONCLUSIONS AND FUTURE WORK

In the complex and distributed environment

it is very difficult to know the configuration values.

And very difficult to find the route cause in case of

failures due to complexity and huge amount of logs

produced. Hence a specific centralized tool which is

being proposed will be much helpful to maintain the

OpenStack cloud deployments post deployment.

The proposed system helps in efficiently manage the

OpenStack environment post deployment. The tool

manages multi datacenter configuration, logs and

metrics on a centralized common node. It allows

user to query for a particular configuration variable.

Allow comparing configuration across datacenters

and within the datacenter from time to time. Further

logs and metrics help in analyzing the failures and

performance issues.

SECOND
NATIONAL CONFERENCE ON ADVANCES IN COMPUTING AND INFORMATION TECHNOLOGY ISSN:2347-7385

© Asian Journal of Engineering and Technology Innovation (AJETI), 2018 164

The proposed system is very specific to OpenStack,

hence same can be generalised to monitor other

cloud platforms. Security for the data collected from

cloud deployments has to be implemented.

REFERENCES

[1] J. Neville, K. Nagaraj and C. Killian. “The Structured

comparative analysis of systems logs to diagnose

performance problems”. In the 9th USENIX NSDI
Conference 2012 (Networked Systems Design and

Implementation).

[2] "Cloud Computing: The Concept, Impacts and the Role of
Government Policy", Link:

http://dx.doi.org/10.1787/5jxzf4lcc7f5-en, [Internet

Source], OECD Digital Economy Papers, No. 240, OECD
Publishing, 2014, [Last Accessed: April 2017]

[3] "Home » OpenStack Cloud Computing Platform Software",

2017. [Internet Source]. Link: http://www.openstack.org/
[Last Accessed: April 2017]

[4] "What is OpenStack?" 2017. [Internet Source]. Link:

https://opensource.com/resources/what-is-openstack [Last
Accessed: April 2017]

[5] "Openstack IaaS Platform", 2017. [Internet Source]. Link:

https://wiki.openstack.org [Last Accessed: April 2017]

[6] "SaltStack Documentation", 2017. [Online]. Link:

https://docs.saltstack.com/en/latest/ [Last Accessed: April
2017]

[7] "How it works", Puppet, 2017. [Internet Source]. Link:

https://puppet.com/product/how-puppet-works [Last
Accessed: April 2017]

[8] "Site Map — Chef Docs", 2017. [Internet Source]. Link:

https://docs.chef.io/ [Last Accessed: April 2017]

[9] Andrei Bogdan Rus, Eduard Luchian, Virgil Dobrota,

Iustin-Alexandru Ivanciu, Cosmin Filip “Automation of the

Infrastructure and Services for an OpenStack Deployment

Using Chef Tool”, Networking in Education and Research

2016 15th RoEduNet Conference.

[10] Nishant Kumar Singh, Himanshu Nagdev and Sanjeev

Thakury Himanshu Chaurasiyaz, “Automated Provisioning
of Application in IAAS Cloud using Ansible Configuration

Management”, 2015 1st International Conference NGCT-

2015 (Next Generation Computing Technologies)

[11] "Ansible Configuration Management", 2017. [Internet

Source]. Link: https://www.ansible.com/configuration-

management [Last Accessed: April 2017]

[12] "DevStack Deployment", 2017. [Internet Source]. Link:

https://docs.openstack.org/developer/devstack/ [Last

Accessed: April 2017]

[13] "TripleO Deployment and Management", 2017. [Internet

Source]. Link: https://wiki.openstack.org/wiki/TripleO

[Last Accessed: April 2017]

[14] Tao Lin, Byung Chul, Yang Chao, Zhu Yaoping Ruan, Tak

Shu, IBM Research Center “LOGAN: Problem Diagnosis

in the Cloud Using Log-based Reference Models”, 2016
IEEE Conference.

[15] "ELK usage document", 2017. [Internet Source]. Link:

https://www.elastic.co/guide/index.html [Last Accessed:
April 2017]

[16] Baek Dongmyoung, Lee Bumchul “Analysis of

Telemetering Service in OpenStack”, 2015 ICTC
Conference (Information and Communication Technology

Convergence)

[17] Monica O, M. Abhishek Sharma; Joshi, Openstack

Ceilometer Data Analytics & Predictions, 2016 IEEE

CCEM Conference (Cloud Computing in Emerging
Markets)

[18] "Ceilometer Architecture", 2017. [Internet Source]. Link:

http://docs.openstack.org/developer/ceilometer/architecture.
html [Last Accessed: April 2017].

SECOND
NATIONAL CONFERENCE ON ADVANCES IN COMPUTING AND INFORMATION TECHNOLOGY ISSN:2347-7385

© Asian Journal of Engineering and Technology Innovation (AJETI), 2018 165

