
Design and Implementation of CodGen Using NLP 
Priyanka1, Priyanka HL1, Priyanka P1, Ruchika1 

1 UG students, Department of CSE, REVA ITM, 

Bengaluru-64. 

 

Naveen Chandra Gowda2 

2 Assistant Professor, School of C&IT, REVA 

University, Bengaluru-64. ncgowdru@gmail.com 

 

Abstract- Programming is an essential tool in today's 

world. It has its influence from agriculture to medicine 

in all possible fields. Learning all programming 

languages is highly impossible by a single individual. 

The time taken to write a program is also a problem 

under consideration. The only solution to the above 

problems is to automatize the process of coding. To 

achieve this automatization, we have designed a system 

that accepts an algorithm and generate the 

corresponding code in one particular language. We will 

be making use of the Natural Language Processing 

(NLP) techniques to achieve the task. 

 

Index Terms - Text Mining, Parsing, Natural Language 

Processing, Automatic Program Generation. 

 

I. Introduction 

Online has turned into preferred mode of 

communication these days. Programming is 

extensively used to write various software’s. 

Learning various programming languages, 

remembering syntaxes and finding skilled 

programmers are the key challenges in this aspect. 

Automating the process of coding is a solution to the 

problem. To achieve that, we make use of Natural 

Language Processing (NLP) techniques and Text 

mining techniques.  

 

The rest of the paper is structured as follows. Next 

section describes previous system that has already 

been built. Section III describes our proposed system. 

Section IV concludes the system and section V is the 

references we have used. 

 

II. Related works 

Of late algorithms have been applied in diverse area 

like Astronomy, Social Sciences and many others. In 

web applications like Facebook and MySpace, Graph 

Theory algorithms should be used. Problem lies in 

algorithm implementation when the programmer is 

not well trained. Moreover there are many 

programming languages and it is not easy for 

someone to convert programs from one language to 

another [3]. A critical challenge in this endeavor is to 

make computer analyses the natural language 

(Algorithm or pseudo code). Suvam and Tamal in [3] 

have found a solution for this by assuming the input 

to be in XML specification. Drawback of this is, user 

cannot give the pseudocode in natural language. They 

have to work on converting pseudocode into XML 
specification. In [4] Amal, Jamsheedh and Linda 

have used pseudocode compilation technique. The 

advantage of this system is user can convert program 

into multiple languages from one pseudocode. 

 

III. Proposed model 

Many approaches can be used to convert algorithm to 

program. Each approach has its own advantages and 

disadvantages. We make use of parsing along with 

few NLP techniques and dataset.  

Input to our system will be a file containing algorithm 

(Pseudo code). Output is the name of the file 

containing equivalent C program. 

 
Fig 1: Proposed System 

 

The process of converting the pseudocode-algorithm 

to a C equivalent program is by inspecting each and 

every keyword present in the individual lines of an 

algorithm. 

1. Splitting algorithm 

This module is used to extract individual lines from 

algorithm. If a particular line contains more than one 

functionality, then we split the line into multiple lines 

so as to obtain one functionality per line.  

Example algorithm: 

 

 

 

 

 

After splitting the above example algorithm, it looks 

like as shown below 

 

Declare b,c as floating numbers 

Read b 

Sum it to 3 and store the result in c 

Print c 

 

SECOND 
NATIONAL CONFERENCE ON ADVANCES IN COMPUTING AND INFORMATION TECHNOLOGY ISSN:2347-7385

© Asian Journal of Engineering and Technology Innovation (AJETI), 2017 11

mailto:ncgowdru@gmail.com


 

 

 

 

 

 

 

 

2. Variable extraction 

In any program, variables has to be declared before 

they are used. Variables are crucial part of an 

algorithm. They play a major role in any program. As 

a result they should be carefully extracted from 

algorithm while converting it into program. This 

module does the task of extracting variables from the 

lines obtained in module1 (Splitting algorithm) 

Consider this example algorithm: 

 

 

 

 

 

Variables extracted from the above algorithm are: b 

and c 

 

3. Assign data type to each variable: 

This module does the task of assigning data types to 

extracted variables. By default integer is assigned if 

data type is not explicitly specified in the algorithm. 

A dictionary is generated for this purpose. 

For the statement: 

 

 

Following dictionary is generated, where keys 

represent the variables and values represent data 

types. 

 

 

4. Convert each line in algorithm into c code 

This module converts each line of the algorithm into 

equivalent c code. 

Consider below example algorithm: 

 

 

 

 

 

Its equivalent C code is as shown below: 

  

 

 

 

 

5. Declare the variables in c file: 

This module appends extracted variables to the 

beginning of C file. 

Variables extracted from algorithm are stored in 

dictionary as shown below. 

 

 

It will be appended to the beginning of C file as: 

 

6. Attach main () to C file: 

Now as all of the code within the body of the 

function is written to C file, we need to attach the 

main () function’s header to it. 

After attaching the main () function, the code looks 

like this: 

 

 

 

 

 

 

 

7. Attach header files to C file: 

Declare b,c as floating numbers 

Read b 

Sum it to 3 and  

store the result in c 

Print c 

Sum = a+b 

Add a to b, 

Store a in b, 

Increment c with 1 

Declare b,c as floating  

 

Dic={b:float,c:float} 

 

Read b 

Sum it to 3 

Store the result in c 

Print c 

 

scanf(“%f”,&b); 

temp=b+3; 

c=b+3; 

printf(“%f”,c); 

 

dictionary={b:float,c:float} 

 

float b,c; 

 

int main() 

{ 

float b,c; 

printf("Enter b"); 

scanf(“%f”,&b); 

                c=b+3; 

printf(“%f”,c);   

} 

 

SECOND 
NATIONAL CONFERENCE ON ADVANCES IN COMPUTING AND INFORMATION TECHNOLOGY ISSN:2347-7385

© Asian Journal of Engineering and Technology Innovation (AJETI), 2017 12



This module appends header files to the beginning of 

C file based on the system functions used in C 

program. Below example shows the C program 

generated after appending header file. 

  

 

 

 

 

 

 

 

 

 

The proposed model of the system is depicted in 

Fig1. 

Once after the C converted file is produced, which 

can be compiled and executed using the pre-loaded 

compiler. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

#include<stdio.h> 

int main() 

{ 

float b,c; 

printf("Enter b"); 

scanf(“%f”,&b); 

                c=b+3; 

printf(“%f”,c);   

} 

 

Fig.1. Phases of proposed System 

SECOND 
NATIONAL CONFERENCE ON ADVANCES IN COMPUTING AND INFORMATION TECHNOLOGY ISSN:2347-7385

© Asian Journal of Engineering and Technology Innovation (AJETI), 2017 13



IV. Expected Output 

The output of the system is expected to be a proper C 

program. The system is expected to convert basic 

algorithms like, arithmetic operation, searching and 

sorting algorithms into proper C program. 

 

Consider the following algorithm to add two 

numbers: 

 

 
 

IV. Conclusion 

So far we have seen the necessity of automatizing the 

process of coding, various approaches used for the 

same and how NLP and text mining techniques can 

be used. Though our approach too has its own 

advantages and disadvantages, it is giving expected 

outputs for the algorithms that we have tested. 

 

V. References 

[1]. Dr. Safwan Omer Hasson, Fathima Mohammed Rafie Younis, 

IJEIT Paper on "Automatic Pseudocode to Source Code 

Translation Using Neural Network Technique", University Of 

Mosul. 

[2]. Kyle Morton and Yanzhen Qu, IJIET paper on "A Novel 

Framework for Math Word Problem Solving". 

[3]. Suvam Mukheerjee, Tamal Chakrabarti, IJCSE paper on 

"Automatic algorithm Specification to Source Code Translation". 

[4]. Amal M R, Jamsheedh C V and Linda Sara Mathew, IJCSITY 

paper on "Pseudo code to Source Programming Language 

Translator". 

 

 

SECOND 
NATIONAL CONFERENCE ON ADVANCES IN COMPUTING AND INFORMATION TECHNOLOGY ISSN:2347-7385

© Asian Journal of Engineering and Technology Innovation (AJETI), 2017 14




