
Comparative Analysis of the Different Compilers
* Sindhuja. L ** Nirmala Gupta

*Sindhu.sin6@gmail.com **nirmalaguptha@revainstitution.org
School of computing and information technology, Reva University, Bangalore

Abstract: Recently there are lot many compilers

Eg clang c++, Cygwin and lot many available.

Users are not able to judge which compiler is best

to analyze, we are aiming to explore best

compiler by comparative analyst. We

demonstrate this by taking the same code and

demonstrating it with the different compilers. By

the demonstration, we can observe that gnu/g++

gives better performance w.r.t other compilers.

1. Introduction

Despite the advent of new programming

languages and technologies C++ is the workplace

for many developers and is likely to remain so far a

long time to come. The main reasons for C++

prominence are its flexibility, portability,efficiency

and performance continues to be important. Aspect

for benchmarking a compiler is not about the quality

of the resulting code but also how long the compiler

has taken to compile. That’s get tricky as well,

because as well, because there are so many

compilers options that can skew the results.

While programs that compare different versions

of the same source code file have been in widespread

use for many years, very little focus has so far been

placed on the importance of detecting and analyzing

changes between two versions of the same

executable.By just comparing the speed of executing

a compiler will not decide which the best one to

choose is.

To decide the best compiler some factors come

into the main role:time to compiled code,size of

compiled code,memory usage of compiled code

bugs etc.In existing work [1],3compilers that is

INTEL C++,GNU C++ and LLVM have been

demonstrated than gnu c++ was among the three

compilers.

2.Proposed work.

Compiler is a computer program that transforms

source code from high level language into lower

level language. Compiler includes better detection

mechanisms, higher performance in terms of

execution and enhancesoptimization. There are

many lists of compiler [1],existing in the global

technology of world.chossing and analyzation of the

best and top most compiler have been made.More

RAM, faster hard drives (including SSDs), and more

CPUs/cores will all make a difference in

compilation speed.

 To choose a compiler, comparision of

different compilers have been made. To decide

which complier are best there are some factors

which has to be considered such as time taken to

compile code, size of compile code, memory usage

of compiled code etc;

 In this paper, some of compilers in the list

have been chosen and made comparison between

them. Compilers used are Borland c++, digital mars

and gnu/g++.

 This paper presents a methods to validate

the compiler using random programs. Different

compilers have been tested by the random programs.

Common ways to compare compilers is by checking

the functionalities of the compilers. Efficiency of

programming language depends upon compiler and

IDE which are going to be used.Effiecient and quick

compilers which makes your code run faster is hard

to search .All we need is to choose the best

compilers among the list of the compilers.

Analyzation of the top most compilers have been

made as to Compare the compilers with different

programs with no limits and also taking with the

limits (using pointers).This requires a lot more

analysis by running sample c/c++ code in all

different compilers.Here we have taken a big c/c++

program which does the task for analysis.

3. Requirments.

Borland c/c++, dm, gnu c/c++ compiler are the

compilers used here to compare with the different

programs.dijistras program and also prime no

program have been taken to compare the compilers.

3.1 Taking programs with different compilers

with no limits.

Dijkstra’s algorithm has been take taken to analyze

the time.dijistras program has been executed in all

three compilers. Snapshot have been displayed

below which displays the time generated.

The command used in compilation for the Borland

C++ is bcc new1.cpp and for execution it is

new1.exe.In Borland C++ better interpretation of the

warnings will be shown. Function related interpreter

will not be handled properly.

Three files are generated after the execution of the

code.Time generated when dijkstra's code is

executed is 0.015 sec in GNU G++ compiler.

3.2:Taking programs with different compilers

with limits (pointers) in the program.

 When Dijkstra’s program used using

pointers in them in the code and when executed in

the Borland c++ it takes 0.0015sec to execute.

SECOND
NATIONAL CONFERENCE ON ADVANCES IN COMPUTING AND INFORMATION TECHNOLOGY ISSN:2347-7385

© Asian Journal of Engineering and Technology Innovation (AJETI), 2017 54

When Dijkstra’s program used using

pointers in them in the code and when executed in

the gnu/g++ it takes 0.002sec to execute. By this

demonstration we can justify that gnu/g++ compiler

has taken least time to compile.

3.3 Taking a different program in all three compilers.

Prime no program is best example to optimize the time. Below are snapshots of the output of the code generated

in all three compilers.

Fig 1:Snapshot of prime no code when executed in the Borland c++ compiler.

 Fig 2: Snapshot of prime no code when executed in the Digital mars compiler.

 Fig 3: Snapshot of prime no code when executed in the Gnu g++ compiler.

SECOND
NATIONAL CONFERENCE ON ADVANCES IN COMPUTING AND INFORMATION TECHNOLOGY ISSN:2347-7385

© Asian Journal of Engineering and Technology Innovation (AJETI), 2017 55

4.Results:

Graph 1:In the graph, time generated by 2 compilers have been plotted according to theseconds. Borland c++

generates 0.016 sec and gnu/g++ generates 0.015 sec(Dijkstra’s without pointers)

 Graph 2:In the graph, time generated by 2 compilers have been plotted according to theseconds. Borland

c++ generates 0.015sec and gnu/g++ generates 0.002 sec.(Dijkstra’s with pointers)

Graph 3.In the graph, time generated by 3 compilers have been plotted according to seconds.Borland

generates 6.04sec,dm generates 6.04 sec and gnu/g++ generates 5.4 sec.

SECOND
NATIONAL CONFERENCE ON ADVANCES IN COMPUTING AND INFORMATION TECHNOLOGY ISSN:2347-7385

© Asian Journal of Engineering and Technology Innovation (AJETI), 2017 56

5.Comparision.

-In table 1.1 there is a comparision of the Borland

c++ and gnu/g++ compiler with the dijistras

algorithm (with no limits).

In table 1.2 there is a comparision of the Borland

c++ and gnu/g++ compiler with the dijistras

algorithm (with limits)eg:using pointers.

In the table 1.3 there is a comparision of the Borland

c++,digital mars,gnu/g++ with prime no code taken

to execute.

6. Conclusion:
When dijistras code is taken to compare the Borland

c++ and gnu/g++ compiler.The time taken for the

Borland compiler is 0.016 sec and for the gnu/g++

compiler it is 0.015 sec.The same digistras code

when used pointers in the code generates 0.015 sec

in Borland c++ and 0.002 sec in gnu/g++

compiler.Prime no program generates 6.40 sec in

Borland c++ , 6.047 sec in digital mars and 5.4 sec

in gnu/g++ compiler.By all these experiments it has

SECOND
NATIONAL CONFERENCE ON ADVANCES IN COMPUTING AND INFORMATION TECHNOLOGY ISSN:2347-7385

© Asian Journal of Engineering and Technology Innovation (AJETI), 2017 57

been proved than gnu/g++ compiler has taken less

time to execute the code.by all these experiments we

can say that gnu/g++ is the best compiler.

References:
1.[http://insights.dice.com/2013/11/04/speed-test-comparing-

intel-c-gnu-c-and-llvm-clang-compilers/]

2.[http://www.c4learn.com/c-programming/compiler-vs-

interpreter/.]

3.[http://www.phoronix.com/scan.php?page=article&item=gcc-

61-clang39&num=1]

4. Christian Menard, Andrés Goens, and Jeronimo
Castrillon,”High-Level NoC Model for MPSoC Compilers”

IEEE Dec 2016.

SECOND
NATIONAL CONFERENCE ON ADVANCES IN COMPUTING AND INFORMATION TECHNOLOGY ISSN:2347-7385

© Asian Journal of Engineering and Technology Innovation (AJETI), 2017 58

SECOND
NATIONAL CONFERENCE ON ADVANCES IN COMPUTING AND INFORMATION TECHNOLOGY ISSN:2347-7385

© Asian Journal of Engineering and Technology Innovation (AJETI), 2017 59

